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II. INTRODUCTION

Codes for correcting large multiple random errors are not used

extensively in practical data transmission systems because of equipment

complexity. Threshold decoding is a method of error correction which is

especially suitable for machine implementation because the logical circuit to

realize the threshold decoding is usually very simple. Finding cyclic codes

that can be decoded by threshold logic becomes important.

Threshold decoding of block codes was introduced by Reed who devised

a decuding - C....... d. the class of _uiks discovered by Muller [14]. Massey

devised many threshold decoding algorithms for recurrent codes as well as

block codes. is book [13] "Threshold decoding" includes a comprehensive

discussion of the work on threshold decoding for block codes before 1963.

Rudolph's [16] threshold decoding algorithm differs from previous algorithms

in that the estimates (parity checks) are not necessarily orthogonal. His

projective geometry codes are specified in terms of parity check matrices.

The determination of the number of check digits lies on the determination of

the rank of the parity check matrix which is often not easy, especially when

the code length becomes large. It is therefore necessary to develop a theory

to described his code in terms of roots of the generator polynonual. The

generator polynomial can then be obtained by multiplying irreducible poly-

nomials found from a mathematical table such as the one from refcrence [14].

Description of the code in term of the generator polynomial is essential in

simplifying implementation.

Weldon [171 has discoved a class of cyclic codes based on difference

sets. Graham and MacWilliams r4lhave studied the numter of information

digits of difference-set cyclic codes. The class of difference-set cyciic

codes is a subclass of Rudolph's projective geometry codes. Kasami [61

.4 has shown that Reed-Muller codes are equivalent to primitive cycles codes

I
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J with an overall parity check bit added. The cyclic property of these codes

simplifies the decoding algorithm of the Reed-Muller codes and also makes

J them more tractable mathematicallv. These codes can now be described

in terms of the roots of the generator polynoi~uals which suggests a natural

generalization to non-binary cases. Weldon has investigated non-primitive

Reed-Muller codes [18 which include as subclasses the primitive Reed-

Muller codes and difference-set codes and has found a decoding algorithm for

them. The non-primitive Reed-Muller code is a subcode of the Rudolph's pro-

jective geometry code, and the decoding algorithm for the non-pririitive Reed-

Muller code is applicable to the Rudolph's projective geometry code. In this

thesis, two related classes of codes derived from Euclidean geometries are

presented. We call them Euclidean geometry codes and modified Euclidean

geometry codes. The generator polynomial of a Euclidean geometry code

is ( x - 1) times that of the corresponding modified Euclidean geometry code.

The code symbols of these codes can be chosen from any field containing a

particular prime field GF (p). The dual of a Euclidean geometry cote over

GF (q) is a subcode of a q-ary (q is a power of prime p) modified Reed-Muller

code which contains the parity checks required to make majority -voting. We

derive a class of codes from projective geometries in terms of the roots of

I generator polynomials. The discovery of these codes are independent of

Weldon's work on non-primitive Reed-Muller code [18] . These codes are

better than the corresponding non-primitive Reed-Muller -odes in general

j because they have more information digits and have the same error -cor.recting

ability by L-step orthogonalization procedure. Theoretically Rudolph's

* projective geometry codes contain the newly established projective geometry

codes as subcodes. So far we have not found any case in which they are
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different. The codes from finite geometries including Euclidean geometries

and projective geometries are subcodes of BCH codes of the same length.

Thus these codes are not as efficient as BCH codes ,: general. However,

for the most interesting values of code length and rate the difference between

finite geometry codes and BCH codes is slight. In an attempt to rind a

general threshold decoding algorithm for BCH codes, we found that a class of

BCH codes cannot be L-step orthogonalized. However, all codes (including

some BCH codes) whose extension codes are invariant under a doubly transitive

permutation group can be decoded by one-step threshold decoding. Some of the

BCH codes turned out to be comparable with codes related to finite geometries

by this method. A

Recently, coding has been applied to information retrieval. Kautz

and Singleton [9J have proposed using zero-false-dro, codes for information

retrieval. Chien and Frazer [3] have derived methods for document

retrieval from algebraic coding theory. Two new classes of zcro--false -drop

codes have been derived from finite geometries, These codkes provide more

useful parameters th~in the previous ones. Investigation has been madke of

the use of error-correcting codes for information retrieval. SLvcral

interesting results have been obtained.

The material in this paper is arranged as follows. In chapter 2.

we present the codes derived from Euclidean geonetries. In chapter 3 the

polynomial version ol proJective geometry codles is given. In chapter 4 wc

investigate the threshold dcod-cixng of cyclic codes, including BCI! codes and

finite geometry coxks. in chapter 5. the application of co(ing theory to in-

formation retrieval is presented. Finally we have. in chapter o. the con

clusion and suggestions for promising areas of future research.

!
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II. CODES DERIVED FROM EUCLIDEAN GEOMETRIES

2.1 Preliminaries

Codes derived from Euclidean geometries are closely related to Reed-

Muller codes, we first intioduce some background concerning Euclidean

geometries and then indicate the connection beeween Euclidean geometries and

Reed-Muller codea.

Let a be a primiu;e element in GF(qm) As the elements

a i(i = 0, 1 ....... m - 1) are linearly independent over GF(q), we may write

m-1

i=0

where v.. is in GF(c).

Let G be a matrix defined as

0 V(m-1)0 Vim- 1) 1 V(m-lXqm -2)

G . .(2.2)

o v10  V11 V (qm-2)

o V00  v0 1  v v 0(qm-2)

The first column of G corresponds to the zero element in GF(q m ) and the

j column ( 2 <j.q ) corresponds a in GF(q m).

We can associate each column of the matrix in equation (2.2) a point

in a Euclidean geometry of m-dimension over GF(q), denoted as EG(m, q) [2).
m2 q M.2EG(m,q) consists of qm points 0, 1, a, a ..... a An

u-dimensional flat of EG(m, q) consists of q points aI a 1 + a2 a 2 +

+ a a + Y where a (I < i < u) are elements in GF(q m ) and are

linearly independent over GF(q). a1, a2 . .... a may run independently• t tU

4
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over GF(q) and -y is a fixed element in GF(qm) [2]. These qU points are

solutions to the m-u linearly independent equations of m unknowns. A

vector associated with an u-dimensional flat is defined to be a vector with

1 (multiplicative identity in GF(q) ) in the positions corresponding to all

points in this flat and 0 (additive identity in GF(q))otherwise.

Kasami et al. [6] has defined a q-ary v-th order modified Reed-

Muller code to be a cyclic code whose generator polynomial contains the

roots aI for all positive integers h such that the weight of h over base q

or the "digit" sum over the real field of q-ary representation of h is greater

than zero but less than m(q-i) - v. That is, if

m-1

h= Z hq , 0<h.<q -1

i=0

m-I
then Wq(h)= E_ hi .  a his a root of a q-ary modified Reed-

i-O

Muller code provided

m-1

0< wq(h) - h <,m(q-1) - v (2.3)

1-0

It has been shown [6] that a q-ary v-th order Reed-Muller code can

be obtained by adding an overall parity check as a first digit to every code

word of a q-ary v-th order modified Reed-Muller code. It is well known

[14] that a binary (m-u)-th order Reed-Muller code contains all vectors

associated with u-dimensional flats. From now on, we shall use the term

"an u-dimensional flat" instead of "the vector associated with an u-dimen-

sional flat" when no ambiquity arises. It has been shown [6] that a q-ary

(m-u) (q-l)-th order Reed-Muller code contains all u-dimensional flats of
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EG(m, q) passing through the point corresponding to the zero element in

GF(qm). In general, a q-ary (m-u) (q-l)-th order Reed-Muller code

contains all u-dimensional flats of EG(m,q). The proof can be given by an

argument similar to that used in reference [6].
I

2.2 Euclidean Geometry Codes

Let q be equal to pS where p is a prime and s is a positive integer.

In this section, we are going to present a cyclic code over GF(p) which has

as parity checks all u-dimensional flats of EG(m, q) with their first digits

deleted.

From the preceding section, q-ary (m-u) (q-l)-th order modified

Reed-Muller code contains all the vectors vu obtained by deleting the first

digits of the vectors associated with the u-dimensional flats. From equation

(2.3),the generator polynomial gl(x) of a q-ary (m-u) (q-1)-th order

modified Reed-Muller code contains a h as roots for h satisfying

0< Wq(h)< u (q-l) (2.4)

Let v u(x) be the polynomial corresponding to vu . vu(x) is a polynomial

whose coefficients is either 1 or 0 hence vu (x) can be considered as a poly-

nomial over GF(p). Since vu(xP) is equal to (vu(X) )P, vu(x) contains a hp as

ha root if it contains a as a root.

Let C(q) be a code over GF(q) whose generator polynomial g2 (x)
0~hpJ

contains a as roots for h satisfying the condition (2.4). C(q)
0

is a subcode of a q-ary (m-u) (q-l)-th order modified Reed-Muller Code and

C(q) contains all u-dimensional flats with their first digits deleted.0I
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g2(x) is a polynomial over GF(p). We now show that the cyclic code

C over GF(p) with g2 (x) as its generator polynomial also contains the u-

dimensional flats with their first digits deleted as code words. g 2(x) is the

least common multiple of the minimal polynomials mi(x) over GF(p) of the

roots a h for h satisfying the condition (2.4). The polynomial vu(x)

associated with an u-dimensional flat is divisible by any such mi(x), hence

v(x ) is divisible by the least common multiple of these mi(x). vu(x) has its

coefficients in GF(p) and is divisible by g2 (x). The code Co contains all

u-dimensional flats with their first digits deleted as code words.

Let C be the dual of the code Co .  g2 (x) contains a as roots

for h satisfying the condition (2.4). The reciprocal polynomial g* (x) of

g2 (x) contains a hp J as roots for h satisfying

m(q-l) > w q(h) > (m-u) (q-l) (2.5)

The generator polynomial ge(x) of the code C contains all qm -1 -th roots of

unity which are not roots of g2(x). a hare roots of ge(x) for any non-

negative integer h less than qm-1 and satisfying the condition

OW (hp)<(m-u)(q-1) ; O<j<s-l (2.6)
-q

Next we show that the lower bound of the minimum distance of the code

Cis

d = 2+ q+ .... +qm%: (2.7)

This can be achieved by showirg that any nonnegative integer h less

than I + q +... + qm-U satisfies the condition (2.6). Let

, m-1

h- Z h, qi O< h,<q-1 (2.8)

i-O

I
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If h. = 0 forall isuchthat 0i<rm-u, then h> l+q+... +qm-U.

Thus for any nonnegative integer h which is less than 1 + q + ... + qm-U,

h. =0 for m-u+l<i< m-land (2.9)

r for at least one i in the range of 05 i m-u

For any h satisfying condition (2. 9), one can easily verify that

"w q(hpJ) (m-u) (q-l) for all j. Thus the generator polynomial of the code

C contains 1 + q + ... + qm-u consecutive roots. The minimum distance

of this code is at least 2 + q ...... + qm-u.

Since C and C are dual codes, all code words of C satisfy the parity

checks specified by u-dimensional flats.

We shall call the code C a Euclidean geometry code with parameters

m, u, q. The code exists for any power of prime q(q=p S, where p is a

prime and s is a positive integer), any positive integer m and any integer u fo,-

l<u<m-1.

Theorem 2. 1: A Euclidean geometry code with parameter m, u, q has code

J length qm -1. The number of parky checks of this code is the number of

nonnegative integer h less than qm -l such that the weight of the integers

I hpj ( 0C j< s-l) over base q is no more than (m-u) (q-l). The minimum

I distance of this code is at least 2 + q +... + qm-u.

The mP't important subclass of Euclidean geometry codes is binary

codes. That is, the case when p equals to 2. We list some binary

Euclidean Geometry codes in Table 2. 1. The entries in this table is (n, k,

I d) where n is the code length, k is the number of information digits and d is

the lower bound on minimum distance (d - 2 + q +.... + qm-U)

I
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Table 2. 1 Binary Euclidean Geometry Cyclic Codes

E G(m, q) u = m-i u = m-2 u = m-3 u = m-4

EG (3,2) (7,3,4)
EG (4,2) (15,10,4) (15,4,8)

EG (5,2) (31,25,4) (31,15,8) (31,5,16)

EG (6,2) (63,56,4) (63,41,8) (63,21,16) (63,6,32)

EG (2,4) (15,6,6)

EG (3,4) (63,47,6) (63,12,22)

EG (4,4) (255,230, 6) (255,126,22) (255,20, 86)

EG (5,4) (1023,987,6) (1023,747,22) (1023,287, 86) (1023,32,342)

EG (2,8) (63,36,10)

EG (3,8) (511,447,10) (511,138,74)

EG (4,8) (4095,3970, 10) (4095,2584,74) (4095, 405,586)

EG (2, 16) (255,174, 18)

EG (3, 16) (4095, 3839,38) (4095, 1376, 274)

EG (2,32) (1023, 780, 34)

EG (2,64) (4095,3366, 66)

The first four rows of this Table are codes associated with binary

Reed-Muller codes and are known. (15,6) code is a BCH code. The rest

of the codes seem to be new.

I

I
I
!
I
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2.3 Decoding of Euclidean Geometry Codes

In this section, we show that by using u-step orthogonalization pro-

cedure similar to the Reed decoding algorithm we can decode the Euclidean

geometry code C with parameters m, u, q to the bound on the minimun

distance d [1J.

The code C satisfies the u-dimensional flat parity checks. In the first

step, we determine u-l-dimensional flat check sums from u-dimensional

flats. In the u' -th step ( 1< u' < u) we determine u -u'- dimensional flat check

sums from u-u'+ 1-dimensional flats.

The following theorem is essential to the implementation of the decoder.

Theorem 2.2: For a given u' -1-diiiensional flat ( 1 < u' -C u), the number of

u'-dimensional flats containing this u'-1-dimensional flat is 1 + q + .... +

q m Any two of these u'-dimensional flats has no points in common

except the points in this u'-1 -dimensional flat.
~u' -l

Proof: Consider a particular u'-1 -dimensional flat which consists of q

points a a 1+a a +.. +a u a i(14 i <u'-1) are linearly
11 2 2 u- 'V

independent points, a i (1 < i < u' -1) may run independently over GF(q).

The u'-dimensional flat containing this u'-1 -dimensional flat consists of the

p+oints alal+ a +... +u,.lau,+au, , ai(1 < A< u)are

linearly independent points, a u , runp over all elements in GF(q). The

number of choice of a , ia m . U'-1 In a fixed u'-dimensional flat,
uu-

the number of choice of a , is q - q . The number of distinct
II

u -dimensional flats containing this u'-l -dimensional flat is (qm - qU,-1 ) /

(qU -qUl )or l+q+... +q . The u'-1-dimensionalflatanda

point not in this u'-l-dimensional flat specify a u'-dimensional flat uniquely.

If two u'-dimensional flats have a point outside this u'-l dimensional flat in

common, they must be identical.



In general, the u'-1-dimensional flat consists of points of the form

a1 C1 1 + a2 a 2 + u.. + U' -1 U, -1 + y? where y, is a fixed element in

GF(qm). The u'-dimensional flat containing this u'-1-dimensional flat con -

sists of points a I a 1 + a2 a 2 + ... +au -1 0 U, -1 + au a u +  "  Adding

y to the points in EG(m, q) can be considered as a permutation of points in

EG(m, q). The argument in the preceding paragraph is still true for th s

u'-1-dimensional flat. This proves the theorem.

M_-u' rn-u1The number 1+q+... + q is no less than i+q+... +q

for any u' (1 < u' <u). We can always pick d-1 ( 2 +q+... +q m-)

number of u'-dimensional flats orthogonal on a particular u'-1-dimensional

flat to determine a parity check sum corresponding to this u'-1 -dimensional

fiat. The determination will be correct provided the number of errors

occurred is no more than [(d-i) / 2]. The decoder consists of u levels of

majority logic. In the u-th level, we need a majority gate to determine the

point (0-dimensional flat) corresponding the first digit position of a code

word. The input to this majority gate is 1 + q 4-... + qm-U 1-dimensional

flat parity check sums orthogonal to this point. We use 1 + q + .... + qm-u

majority gates in the (u - i)-th level. The decoder is tree-like. In the

j-thlevel(1 < j <u), we use (I+q+... +qm-u) u-j majority gates to

determine the same number of (u-j)-dimensional flats. The total number

of majority gates is

u

1- (l+q+ .... +qm-u ) j-1

The choikc of (u-j)-dimensional flat parity check sums in j-th level

is not unique. The construction of the decoder is not unique. Furthermore,

the u'(l < u' < u) dimensional flat used in the majority voting may not be
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linearly independent. We may not need I number of majority gates if this

is the case. The tree-like decoder is not necessarily the best one. Simplifi-

cation in circuitry is possible by detail evaluation of the dependency of the

parity checks required.

We now give an example of the binary k15, 6) Euclidean Geometry code

to illustrate the method of obtaining parity checks required for threshold de-

coding.

2Example: Take q=2 , m=2, andu= 1. Let a be a root of primitive

polynomial x + x + 1 over GF(2 4). a is a primitive element of GF(2 4).

4All the elements in GF(2 ) are linear combinations over GF(2) of

2 31, a,a ,a as follows:
S2 3 4 5 6 7 8 9 10 11 12 13 14
1 a a a a a a a a a a a a a a

S-ooooloo1ll 1o o1111

- a a (2.10)
~0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

i I 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1-

Let 3 a 5 then 03 is a primitive element of GF(2 2  We can

consider GF(2 )as an extension field of GF(2 2). a is a primitive element

of GF(2 4). All elements in GF(2 4) are linear combinations over GF(22 )

of 1, a. All elements in GF(2 2) can be written as linear combinations of4i
1, 3. From equation (2. 10), all elements in GF(2 4) can be written as

linear combinations of 1, 03, a, a/3 over GF(2) as follows:

1

___
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O 1 a a 2 a 3 a 4 aa 6 7 a 8 a 9 a 10 a 1 1 a12 13  141

10 010aa1aa0aa a a01 a a0 0 0 0 1 0 0 1 1 0 1. 0 1 1 1 1"

0o 01 1 1 1 0 00 01 1101 (2.11)
0 o 0 1 1 0 1 0 1 1 1 1 0 0 0 1

Since 3 satisfies the primitive polynomial x2 + x + 1 over GF(2),

02 - +1 (2.12)

Equation (2. 11) can be rewritten as

0 1 a a2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a1 0 a 1 1 a 1 2 a13a14]

[aL 0 0 1 11 22 0 2 , 021 (.3
0 1 21 01313123012 (213)

It is easy to see from equation (2. 13) that a is a root of a primitive

polynomial x2 + x+P3 over GF(2 2).

The generator polynomial ge(x) of the Euclidean geometry code C

contains a h as roots for the integers h such that

0 < w 4(h21 ) <(2-1)(4-1) ; 0 < j < 2-1

The integers h satisfy this condition are 0, 1, 2, 4, 8, 3, 6, 9 and

12.

The generator polynomial g2 (x) of the dual CO of the code C

contains a has roots for the h's equal to 1, 2, 4, 8, 5 and 10. The q-ary

(q-4) third order modified Reed-Muller code has generator polynomial gl(x)

contains a h as roots for the h's equal to 1, 2,4,8 and 5. The code C( q ) over0
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2T GF(2 ) with g2 (x) as its generator polynomial is a proper subcode of the

q-ary third order modified Reed-Muller code.

From matrix (2.13), the 1-dimensional flats over GF(2 2) of EG(2, 22)
o

passing through the point a = 1 are as follows.

1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0

0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 (2.14)

0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1

*0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

The i-th row (1 < i < 5) corresponding to a 1-dimensional flat con-
~i-1 F22)

sists of aa + 1 where a runs over GF(2

By deleting the first column of matrix (2. 14), we have a set of 5 parity

checks orthogonal to the point a These are parity checks for the binary

(15,6) code.

2.4 Modified Euclidean Geometry Codes

In this section, we define a modified Euclidean geometry code which

has one more information digit than the corresponding Euclidean geometry

code and has a lower bound for nnimum distance less than that of the latter

code by one and can be u-step decoded up to this bound.

Let g (x) be the generator polynomial of the Euclidean geometry code

with parameters m, u, q. We define the corresponding modified Euclidean

geometry coxke by the code generated by ge(x) /(x-1). Obviously, the lower

bound for the minimum distance of this code is 1 + q + .... + qm-U. q-ary

(m-u) (q-l)-th order Reed-Muller code contains aU the vectors associated
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with u-dimensional flats. The generator matrix of G of this Reed-Muller

code would have the property that the vector with all 1 entries is the only

vector with nonzero entry in the first digit. If we delete the all 1 vector

in G, the row space of the new matrix contains all the vectors in the row

space of whose first digit is equal to zero. Let v'. be a vector obtained

by deleting the first digit of a vector corresponding to an u-dimensional flat

which does not pass through the first point. From this argument, a code

with generator polynomial (x-l) gl(x) contains all the vectors v u ' where

gl(x) is the generator polynomial of q-ary (m-u) (q-1)-th order modified

Reed-Muller code. Thus the modified Euclidean geometry code satisfies

all u-dimensional flat parity checks which do not pass through the deleted

point. The total number of u -dimensional flats (1 4 u' < u) containing

a particular (u'-l)-dimensional flat which does not pass through the deleted

point is 1 + q +- ... + q m Only one of these u' -dimensional flat con-

tains the deleted point. We can decode this modified Euclidean geometry

code to the distance I + q + .... + q by u-step orthogonalization pro-

cedure.

We can obtain some binary modified Euclidean geometry codes easily

from Table 2. 1.

I./
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III. CODES DERIVED FROM PROJECTIVE GEOMETRIES

3.1 Introduction

A class of cyclic codes suitable for threshold decoding has been

developed by Rudolph [16]by using the properties of projective geometries.

He first found a majority decoding algorithm which does not require the

parity checks used in majority voting to be orthogonal. The guaranteed

error correction of a code can be determined easily as the parity check

matrix is an incidence matrix of a balanced incomplete block design which

is also cyclic. However, it is often necessary to compute the rank of the

parity check matrix individually. Weldon [18] defined and developed the non-

primitive Reed-Muller codes in terms of the roots of generator polynomials.

An important subclass of non-primitive Reed-Muller codes are subcodes of

Rudolph's projective geometry codes. Following Weldon's approach, the

generator polynomials of these non-primitive Reed-Muller codes can be found

easily and a more powerful decoding scheme is also applicable. However,

Jthe Rudolph version of these codes generally possess a larger iumber of

information digits.

In this chapter, we describe codes derived from projective geometries

in terms of the roots of the generator polynomials. These codes are better

than Weldon's non-primitive Reed-Muller codes becaise they have more

information digits in general. These codes are generally subcodes of

Rudolph's codes. So far we have not yet found any of the cases that these

codes are not icxntical to Rudoiph's projective geometry codes. A better

code which contains the new code as a subcode and which was all required

parity checks is given. In some special case, this code is identical to the

Rudol0i's projective geometry code. The description of the generator poly-

nomial of this code is somewhat less easy than the previous one.

L
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Ln an attempt to find the polynomial version of the Rudolph's code,

we have succeeded, independently of Weldon's work, in constructing the

generator polynomials ct a class of cyclic codes. It is shown in section

3.3 that these codes include Weldon's codes as subcodes in general and

they possess a larger number of information digits in a number of cases.

3.2 Rudolph's Projective Geometry Codes

First, let us introduce Rudolph's majority decoding algorithm. Let

A =[ai] , i = 0, 1 ...... b-i; denote the parity check matrix of a cyclic

code over GF(p). Suppose the leftmost column of A contains r nonzero

elements, namely, a.V, k= 1,2,..., r. Consider A0 =/[a . ,

k=1,2, ... , r asubmatrixofA. A received sequence B=(b 0 , bi t ...

by 1 ) is a vector sum of a transmitted code word C =(c o c1 , .. , cvI)

and an error vector E = (e0 , ell ... I ev-1). To decode received digit

i0 , we first muiiiply the matrix A by the transpose of the received sequence

TB and set the product A0B equal to zero. The resulting equations are

v-1

Sai-b -0 k-1,2 ., r (3.1)

j-0

Treating b0 as an unknown and solving

v-i

bo "1aio Z aI. b. k-1,2 .. r (3.2)
j=l

Denote the r "estimates" of the first received digit by b(k)

0

k 1,2.... ,r. One additional estimator is the identity b (0) = b0 . Now0 o

A
set the decoded symbol co equal to that value of GF(p) assumed by the

largest fraction of the r + 1 estimates b (k). For a cyclic code this scheme

for decoding thc first digit also decodes the other v -1 digits.
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In a balanced incomplete block design, we have v objects arranged

in b blocks. Each block contains k1 distinct objects. Each object occurs

r times and each pair of objects occurs together in A times. Block design

is conveniently represented by a b by v incidence matrix S =IsiJ where

si =1 if i-th block contains j-th element, si = 0 otherwise. Elemently

conditions for the existence of a (v, kI , r, b, A) balanced incomplete block

design are as follows.

1. vr=b k1

2. X (v-i) = r(k1 -1) (3.3)

If the parity check matrix A is the incidence matrix S, then the r by v

submatrix will have r l's in its leftmost column and X l's in all other columns.

This leads to a set of r + I estimators (including the identity with each b.J

appearing in no more than A equations. The decoding algorithm is capable

of correcting any combination of e or fewer errors where e 4[r/2A].

J The brackets denote "integer part of. "

A balanced incomplete block design is called cyclic if every cyclic

Ipermutation of a row of the incidence matrix A is also a row of A. One well-

J known class of cyclic designs is associated with projective geometries.

Denote by PG(m l , q) the projective geometry of dimension mI over

GF(q). For each u(1 < u < ml), one can associate a cyclic incidence

matrix A such that the columns correspond to the points and the rows corre -

spond to all possible u-spaces of PG(m 1, q). The error-correcting ability

I is

e =,/2 , L 2(qu -1) J

The number of check digits however is not known explicitly. A computational

Iprocedure is of course possible by determining the rank of A.

I
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3.3 A Method for Determining the Generator Polynomials of Projective

Geometry Codes

Rudolph describes his projective geometry codes through the parity

check matrices. In this section a procedure is described for finding the

generator polynomials of a new class of cyclic codes. It is shown that the

code polynomials of the codes generated do satisfy Rudolph's parity check

equations. Hence the new codes are subcodes of the codes specified by

Rudolph.

Let q = pS. Let a be a primitive element of GF(qm). Let n be

(qm-1) / (q-1). As the elements a i(1 < i < m1 , m1  m-l) are linearly

independent over GF(q), we may write

m1
a V. .i a i 0 < j < qm -2 (3.5)

i= 1

where v. is in GF(q). Arrange the coefficients in matrix form and defineii

urn1 vm10 Vmll 1 o ml (n-l)

uI V1 0  V1 1  v . l(n-l)

0Uo Vo0 V0 1  " e v0(n- 1) (3.6)

We can associate each colun,,. ,,;orresponding to a ) of this matrix

to a pointof PG(m,q) [ 1]

An u-space of PG(m ,q) is defined to be the totality of the points

linearly dependent upon a get of u + 1 linearly independent points. A vector

associated with an u-space is a vector such that its component is equal to 1 if

A
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the position of this component corresponds to a point contained in this u-space

and the component is equal to 0 otherwise.

We first show that the vectors associated with u-spaces can be

expressed as linear combinations of vectors related to the product of the

powers of the vectors uo , U1, ... , U rn Let

S(v i 0 v "..., Vi(n-1) ) (v3o Vj l... Vj(n-1)
(3.7)

=(vi 0 vJ OF vi 1 v 1 .. Vi (n-l) Vj (n-1))' 0< i,j < m1

where vik V. k is a product of vik and vj k in GF(q). For a positive
1 ~ 1.

integer i define u, 1  to he ui multiplied by itself 2. times. Definr

U =U o (1,1,..., 1). (3.8)uI = 0 u 1 ... rn

Let L be a matrixu

Iri.o u 1 (3.9)
0o 1 m1 J

whose rows are the vectors u10 u 1 1 '1 ml witho .

0 U 1  ml wit 2 1 I
satisfying the condition

m I

c(q 0 < c < (m,-u), 0 < L •q-1 (3.10)
i,,O

0 1U
The u-space which contains a , a ...... a , corresponds to the

vector
1 m1  -ill+I ° (q- Ul (3.11)

ml-tl( q)
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This vector is in the row space of L . Consider any u-space con-
do  d1  d u

tamining a , a ..... , a linearly independent points over GF(q), then

there exists a nonsingular matrix M over GF(q) such that

a oa 1 a u. . =M[ o ,a ..., a (3.12)p .. _j I

Let [m. ..... . 1, xi = M l, ., u1, 0]T The vector
m 1 1

m1

q- (xq1 - u1 )correspona.- to the u-space
ml-ul(-1) 1 i-u+ 1

cantaining do , d I ... , d . One can easily verify that this vector is a1 0 1 ' u

lineary combination of the vectors u0  U I.... UmI  satisfying the

condition (3. 10). Thus we have shown the following.

Lemma 3. 1 Any vector corresponding to an u-space is in the row

space of L over GF(q).
u

G u + a h . (ah)n-1 (3.13)

where h is an integer less than qm- 1 and is a multiple of q-1 and the weight

of h over base q is no more than (mI1 - u) (q -1).

We want to show that the row spce of G over GF(q) is identical

to the row space of L over GF(q).

Let m 1

h, '7 hi q i  O< h i < q-1 (3.14)

m 1  m I1 m 1

h- hi+ z hi(q'l)'wq(h)+ z hi(q '-1) (3. 15)

i=0 i-0 i-O

qi-1 is divisible by q-1. Thus h is divisible by q-1 if and only if w q(h) is

divisible by q-1.
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Any integer h in the matrix Gu satisfies

w q(h) = c(q-1) 0 < c < (m1 -u) (3.16)

We first show that any row vector of G is a linear combination of

the rows of Lu . Consider a typical row of matrix (3. 13),

[1 ah .... (ah) n -l] (3.17)

The matrix consists of m rows. Let
m 1

(ah c a (3.18)

The typical column (a h) is actually as the following.

[C.

Co3  (3.19)

We need only to show that c. (m < i < 0 ) is a linear combinationLo L11  "m-

over GF(q) of the terms v oj v j ... Vm j  with 1o ,  ..... M 1

satisfying condition (3. 10) and this linear combination is independent of j.

From equations (3. 5) and (3. 14), we have
h jm l 1 ht qt

(a -(aj I)h -(Z vij aO)i h (3.20)
1-0
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By expanding equation (3.20)

(h)= m vi a i qt  ht

fli i+i2+ +i') q
T v - . . ..... v. I .t t

tI .~l i . . . P h t -< m 1 1 2 (3 . 2 1 )

In the t-th factor of equafion (3.21), each term in the summation has

as coefficient v v..... v. which is a product of 'i of the factors'l i2J hi

voj, V j,.. , vml j with repetitions permitted. By expanding equation

(3.21)

(ahi - 7'b af(h) (3.22)

f

Where f(h) depends only on h but not on j, bfj has the form
I~ I'I

b - Vj Vlj .... Vml j  (3.23)

and m m 1

Z h wq(h) (3.24)
i-(} t-O

Let

0< I< q-1 and m. £ mod q-1

then

b - v Vf ... Vm 
(3.25)

fj' Oj I I

with Io  ..... Irn satisfying condition (3. 10).

0' 1' Tn
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a f(h) can be expressed as a linear combination over GF(q) of 1,
m 1

a, ... a Equation (3. 22) can be rewritten as
m1  1

= ci. a (3.26)

i=O

where cij is a linear combination over GF(q) of bfj. Thus we have shown

that the row space of Gu over GF(q) is a subspace of the row space of Lu

over GF(q). The dimension of the row space of Gu is equal to the number

of h satisfying condition (3. 16). The dimension of the row space of L overu

GF(q) is no more than the number of rows of L Let the integer h be

corresponding to (10, 2i .... Im1 )if h.l for 0 < i < . The

number of h satisfying condition (3. io) and the number of (1o 01 ..... 1m

satisfying condition (3. 10) are equal because there exists one to one corre-

spondence between these h's and these (1 02 ... 2 )'s. The

dimension of the row space of G is no less than the dimension of the rowu

space of L . Hence, we haveu

Lemma 3.2 The row space of the matrix Gu over GF(q) is equal

to the row space of the matrix Lu over GF(q).

Theorem 3. 1 Let C be a code with a h as a root of its generator poly-

nor d g~x) if and only if h is divisible by q-1 and satisfies the following

condition.

0< w (hp') < (m u) (q-1) ; 0 < j < s-1 (3.27)

q_

w q(hp ) is a digit sum of the q-ary representation of hp .  The null

space of C contains all u-spaces of PG(m i ,q).

Proof: From lemma 3. 1 and lemma 3.2, any vector associated with an u-

space is in a code over GF(q) whose generator matrix is equal to G . The
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parity check matrix in this code is

I h' h' ]

Hu = [I a h----- (a ) n-1 (3.28)

where h' is an integer less than qm-1 and satisfying the condition

q-I h' O< W,(h') < (u+lXq-l) (3.29)

Let v(x) be a polynomial associated with an u-space. a are roots

of v(x) for h' satisfying condition (3.29). v(x) has its coefficients over GF(p).

a is a root of v(x) implies a are roots of v(x).

A code whose generator matrix is

a h' ..-------- (ah'pj )n-l I  (3.30)

with h' satisfying condition (3.29) satisfies the parity checks associated with

all u-spaces of PG(m I q).
~h

Thus the generator polynomial of this code has a as its roots for h

satisfying condition (3.27). This theorem is proved.

BCH bound for this code can be seen as follows. Let h = t(q-l) and

m m1 -u m I  -1-

h hi q  where q-l> h.i > 0. For 0 < t -<q +I +

iPO

+q, h. equal to 0for m, > i > (m l -u+ l) and not all other hi 's equal

to q-l, hence wq (t (q-l))< (m l -u + 1) (q-l). One can easily verify that

wq (t (q-l) p') < (mI -u +1) (q-1) for all these t's. Thus the code C defined
rn-u ml-u-l

in theorem 3. 1 contains q + q + ... + I consecutive roots.

Weldon's decoding algorithm for non-prinutive Read-Muller codes, i.e. u-step

orthogonalization procedure [18] and Rudolph's one step decoding algorithm in

section 3.2 utilize the fact that the null space of their codes contain all u-spaces

I
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of PG(m , q). Their algorithms can be applied to this code. Some possible

improvement of Rudolph's decoding algorithm with be presented in the next

section. The guaranteed decodable distance by u-step algorithm is

mI -u
d =2+q+..... +q (3.31)

* which is identical to the BCH bound of the code C in theorem 3. 1. The

guaranteed decodable distance by one-step algorithm is

d, =[(ql - 1)/ (qu-1) + 1 (3.32)

d is greater than dI in general, but the dktcoder for one-step decoding

algorithm may be simpler than dhe decoder for u-step decoding algorithm.

In Table 3. 1, we list some binary codes from theorem 3. 1. n, k are

the code length, the number of information digits, d and d1 are defined in

equations (3. 31) and (3.32) respectively. The number of information digits

of C is identical to the number of information digits of Rudolph's projective

geometry code listed in reference [16]. Thus theorem 3. 1 establishes the

li generator polynomials for all Rudolph's projective geometry codes listed in

Table 3. 1. We will see later that some of the codes in Table 3. 1 have more

I information digits than those of Weldon's non-primitive Reed- Muller codes.

t

I
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Table 3. 1 Binary Cyclic Codes (n, k, d, d,) Associated with PG(m I , 2s)

PG(m 1, 2 u = m1 -1 u = m 2 u m -3  u=m 1 -4

PG(2,2) (7,3,4,4)

P.(3, 2) (15,10,4,3) (15,4,8,8)

PG(4, 21 (31,25,4,3) (31, 15,8,6) (31,5, 16,16)

P0(5, 2) (63,56,4,3) (63,41,8,5) (63,21,16,11) (63, 6,32,32)

PG(2, 4) (21, 11,6,6)

PG(3,4) (85,68,6,5) (85, 24,22,22)

PG(4, 4) (341,315,6,5) (341,195,22,18) (341,45,86,86)

PG(5, 4) (1365,1328,6,5) (1365,1063,22,17) (1365,483,86,69) (1365,78,342,342)

PG(2, 8) (73, 45, 10, 10)

PG(3, 8) (585,520, 10, 9) (585,184, 74, 74)

PG(4, 8) (4681,4555,10,9) (4681,3105,74,66) A,681,590,586,586)

PG(2, 16) (273,191, 18, 18)

PG(3, 16) (4369,41%2,18,17) (4369,1568,274,274)

PG(2,32) (1057, 813, 34,34)

PG(2,64) (4161,3431,66,66)

We next show that this code contains Weldon's non-primitive Reed-

Muller code of corresponding parameters as a subcode.

Let h be an integer less than q m-1. Let q-ary re:presentation of

hbe
m 1

h ZL h, q ; 0 < h, < q-1 (3.33)
i- I

Let q p. Let p-ary representation of hi be

s-1i.

S-0
h h 0 -C i < M, P0 < hi <p-1 (3.34)z i
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Let m

w= = Zhj , 0 < j < s-I (3.35)
i=0

The weight of h over base p is defined as tne "digit" sum of the p-

presentation of h, that is

m s-1 s-1

W (h) = = h Wi (3.36)

i=0 j--O j=o

The condition for h such that a nis a root of the generator poly -

nomial of the projective geometry code specified in theorem 3. 1 is equivalent

to the following condition

Wq(h) = W0 +pW 1 +..... + ps-1 Ws- 1 = (pS'1) k0

W q(hp) = pW°o + p 2W 1i + ... + Ws. 1  =(pS-l) k 1 (3.37)

s-i, ;- -i+ *s -2  sw q(hp-) = p W0 + W+ ..... +p Ws (pS1) k -1

where 0 < ki <(m 1 - u)

From equation (3.37), we have

s -i s -I
(+ P+ ... +ps- w,) (pS_1)( k J

j-o jWO

then
s-I s-i

z W j(p-11 z k1 <s(m1 -u) (p-I) (3.38)

j=0 j.0

Only binary case is treated explicitly in Weldon's paper (181 , Let

g(x) be the generator polynomial of the non-primitive Reed-Muller coe of the

same parameters q - 2 s , m1 and u as in theorem 3. 1. a his a root of
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g(x) if and only if h is an integer less than 2 ms - such that h is divisible by

2s -l and the weight of h to the base 2 is no more than s(m 1 - u).

From equation (3.38), we have shown that the non-primitive Reed-

£ Muller code is a subcode of the corresponding projective geometry code

defined in theorem 3. 1.

In next, we show that the special case u - m i - 1, Weldon's code is

identical to the code defined in theorem 3. 1. For p being any prime and

u = m1 - 1, Weldon's non-primitive Reed-Muller code contains roots a h for

h is divisible by q - 1 and

s-i

wp(h) = j (s(p-1) (3.39)

j-o

For nonzero h which is a multiple of pS-1, it is known [18] that wp(h)

is no less than s(p-1). From equation (3.39),

wp(h) = -W s(p-l) (3.40)

Since m I  m m

h- Z hiq' = hi + Y hi(q 1-l) (3.41)

i'0 i-0 i-0

that h is a nonzero integer divisible by q -1 implies that h is also a

iO
nonzero integer divisible by q-1. Thus

m 1
w ( Z hi ) > s(p-1) (3.42)

P i-O

S

It
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But m 1  m 1
Sup hi) <Z wp(h) = Wp(h) s(p-l) (3.43)

i=0 i=0

Equations (3.42) and (3.43) imply that

ml m1

SWp( h,) = (h ) (3.44)

i=O i=O

This implies that
* ml

Wj hi j <p-1 , 0< j < s-1 (3.45)

i=0

From equations (3. 40) and (3.451

Wj =p- ; 0< j < s-1 (3.46)

For u equals to mI - 1, Weldon's non-primitive Reed-Muller codeII h
contains root a for nonzero h satisfying condition (3. 46) and for h being

3 equal to zero. These h satisfy the condition (3. 37). Weldon's code in-

cludes the code defined in theorem 3. 1 as a subcode for u = mi - 1 case.

But the former code is a subcode of the latter code in general. Two codes

are identical for u - m 1 - 1 case.

The number of ways to obtain p - I as ordered sum of m nonnegative

integers is (P'I -I hence the total number of h satisfNing equation (3.46)

t m-I m1

is i n.1 The number of check digits for the new code is

rm + =i + -i2)S =1+ (+m i-l)s (3.47)
1 1

( This is an upper bound for the number of check digits for Rudolphi's

projective geometry code for u being equal to m1 - 1.

i



31

For srecial case m = 2, the number of check digits is

r 1 = 1s+ (p1)s (3.48)

In referenceE4], Graham and MacWilliams have shown that the number

of check digits for any difference-set cyclic code which is identical to Rudolph's

projective geometry code for m1 equal to two and u equal to one is equal to

rmI -1 in equation (3.48). In this case, the nou-primitive Reed-Muller code

and the code specified in theorem 3. 1 are identical to Rudolph's projective

geometry code.

The non-primitive Reed-Muller code does not equal to the code defined

in theorem 3. 1 in general. For p equal to two, the non-primitive Reed-

Muller code contains roots a h for i e r-,' h ]hss than 2 ms- 1 and satisfying

s-I

W. J v (2s-,l ; v is an integer

j=0

s-I

E W. C s(m1  u) (3.49)
j.0

h
The condition ior t. to be the roots of projective geometry code

specified in theorem 3. 1 is

3-1

W t k.(2S-1) ; 0<k,<(ml-u) , 0< j,<s-1 (3.50)

t-0

where Wt+ J is equal to Wt j  for some z such that t+j- zs is a non-

negative integer less than s.

For m2>5,q-2 2andm -u-3; W0  Oand W1 =6isa solution

'I

!4
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to equation (3. 49) but not a solution to equation (3. 50). In these

cases, the non-primitiW Reed-Muller codes are proper subcodes of pro-

jective geometry codes. It is easy to verify that if a non-primitive Reed-

Muller code is a proper subcode of the projective geometry code for m1 = m

q = 2s , m 1 - u = 2 then the former is also a proper subcode of the latter

for mI = m'+ i, q=2 2s m 1 - u = i + i for any positive integer i.

In Table 3.2, we list the paramet rs s, 1, and m 1 of which the non-

primitive Reed-Muller codes are proper subcodes of projective geometry

codes specified in theorem 3. 1. In the remark column, we give the reason

for the former codes being proper subcodes, that is, the Wi's which satisfy

the condition (3. 49) but not (3. 50). Some numerical examples are listed

in table 3.3.

Table 3.2 Cases of Which Binary Non-primitive Reed-Muller Codes are

Proper Subcodes of Projective Geometry Codes

s M1 u m Remark (i is any positive integer)

2 3+i >5+i W ° i , W +i

3 2+ii >4+i W -1+i, W, i, W 2 -A+i

3 3 + > 4+i W -04+i, W2  5+i
2+i >5+i Wo 1 I

4 2+i >5+i W° -2+i, WH - 1+:_, 'H24+iW =+
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Table 3.3 Numerical examples of codes in Table 3. 2

8 1 m I  (n, k1) (n, k2 )

2 3 5 (1365, 481) (1365, 483)*

2 3 6 (5461, 3143) (5461, 3185)

2 4 6 (5461, 742) (5461, 1036)

2 3 7 (21845, 17532) (21845, 17588)

2 4 7 (21845, 9048) (21845, 9096)

3 2 4 (4681, 3090) (4681, 3105)*

3 3 4 (4681, 575) (4681, 590)*

4 2 3 (4369, 1505) (4369, 1568)*

4 2 - (69905, 50779) (69905, 52079)

4 3 4 (69905, 4979) (69905, 5579)

kI is the number of information digits of non-primitive Reed-Muller

code. k2 is that of projective geometry code.

A code containing the code of theorem 3. 1 as a subcode and also

satisfying the parity checks associated with u-dimensional spaces will be

presented. We prove that in some special cases, this code is identical to

Rudolph's projective geometry code.

From equations (3.37) and equation (3.46), the code C1 specified

in theorem 3. 1 for u equal to m1 - I has its generator polynomial containing

ah as roots if and only if

indicates this projective geometry code appears in Table 3. 1.
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h = 0 (3.51)

or h satisfying the condition

w1 W(hp ) =q-1 ;0_ 4 _s-1 (3.52)

Let Cu be a code whose generator polynomial consists of roots a h
i U h(i)

which is a product of the roots a ( 1 < i e m 1- u) of the generator

polynomial of C ml- 1 a are not necessarily distinct.

m I -u

h = r h(i) (3.53)
i=1

From equations (3. 51), (3.52) and (3. 53)

m I -u m I -u

1 Wq~h)wq(h = hw) < w whi -(ml-u) (q -1) (3. 54)

q i ) p)i< i

P ) are multiples of q-1, then h is a multiple of q-1. From equation (3. 54),

wq(hpj)= vj(q-1) ; 0 < j -C s-i , 0 4 v. j<(m -u)(q-1) (3.55)

Hence the code Cu contains the code specified in theorem 3. 1 as a
subcode. We want to show that Cu has all u-dimensional flats as parity

checks. Fur& - ,-ulUre Cu is identical to a Rudolph's projective geometry

code when C Mi- is equal to a Rudolph's projective geometry code.

The generator matrix of the dual code of C is

G i ah h ------ (a n-1i (3.56)I

I
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for h equal to zero or b satisfying

W.=p- 1 0 < j <s-I (3.57)

where W, is defined in equation (3.35).I

Let (t o ..... 2 m I ) be corresponding to h if

Ii =h i 1 0 < i < m I  (3.58)

Then the row space of G can be shown to be identical to the

row space of

Lm U o Uf -----uM1 (3.59)- [ o -- m 1 ]

with (2 ot I ...... I mI ) corresponding to the h equal to zero or h

satisfying equation (3.57) as follows. m1  s-1
m I  E E h tk pt s + k

a h)j =(aj)h_( vi j a i ) t= k=0 (3.60)

h m s- 1 k ts+k htk
(ah)J - -T IT ( ) (3.61)

t-0 k-O i=O

The rest of the proof can be accomplished by analogy of the proof of

lemma 3.2.

Let L' be a matrix whose row vectors aie the vector product ofu

the row vectors of LmCI taking m1 - u at a time.

The parity check matrix of Cu can be written of the form in equation

(3.56) for h satisfying equation (3. 53). Similar argument as u equal to

m -1 case, the matrix L' is also a parity check matrlx of C
u U
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Since any (m1 - 1)-space of PG(m 1, q) is in the row space of Lrn i*m1-
Any u-space can be considered as an intersection of some m1 - u number of
(m1 - 1)-spaces, hence it must be in the row space of L'. In case that the

u

vectors associated with (m1 - 1)-space of PG(m 1 , c span the row space of

L, the vectors associated with u-spaces of PG(m 1, q) als )an the row

space of L'.
U

uuThus the code C u has all u-spaces of PG(m 1 , q) as its parity checks.

Cu is equal to Rudolph's projective geometry code provided Cm is equal

to Rudolph's projective geometry code.

3.4 On Rudolph's Decoding Algorithm for Projective Geometry Codes

Rudolph's Decoding Algorithm uses all u-spaces of PG(m 1, q) for

majority voting. In this section, we show by an example that it is possible

to choose a set of u-spaces which are orthogonal on a point for majority

voting and achieve the same guaranteed decodable distance by Rudolph's

method in some cases.

Example. For m1 =4, q =2, u =2, we have binary (31, 15) code.

The Rudolph decoding algorithm requires all 105 2-spaces to be used for

majority voting and achieve a guaranteed decodable distance 6.

Let a be a root of primitive polynomial x5 + x2 + 1 over GF(2),

then the matrix G in equation (3. 6) becomes

r0000100101100111110001101110101-1
0001001011001111100011011101010
I00010010110011111000110111010100
0100001001011001111100011011101I
1000010010110011111000110111010j (3.62)
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We can choose the following five 2 -sp5Lces orthogonal to the first

point.
1100100000100000011000000000001
1001100000100000000001000100010

{1000001100000001000000101001000
100000001 1000000100010000010100I

LiOOOOOOOOOOOliO1110010 1000000ij (3.63)

Tne guarc-nteed decodable distance by using this set of orthogonal

parity checks is also 6.

It is impossible to choose sufficient number of u-spaces which are

orthogonal on a point for majority voting and achieve the same guaranteed

distance by Rudolph's method in general. For example, any two (mI - 1)-

spaces of G(m 1 ,q) intersect a (m1 - 2)-space. We cannot get a set of two

or more parity checks orthogonal on a point for m1 > 2. The guaranteed

decodable distance by Rudolph's method is[ m r1
q -I q - I

Thus for projective geometry code associated with (mI - 1) - spaces

of PG(m 1 , q) with mI> 2, we cannot obtain q(q>2) number of (mi - 1) spaces

orthogonal on a point for majority voting, hence we cannot achieve the same

guaranteed decodable distance q + 1.

A.

-b!
,r
14
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IV. INVESTIGATION OF THRESHOLD DECODING FOR CYCLIC CODES

Since BCH codes are most powerful random error-correcting codes,

we investigate whether all BCH codes can be L-step orthogonalized. Un-

fortunately, we find that a class of double error-correcting BCH codes cannot

be L-step orthogonalized. On *he other hand, we found that BCH codes with

length qm-1 as well as Euclidean geometry codes can be one step decoded

by parity checks which are not necessary orthogonal. We cannot decode these

codes to their minimum distances in general. These codes decoded by this

method is comparable to projective geometry codes decoded by Rudolph's

method. A comparison is made for the codes derived from projective

geometries and the codes from Euclidean geometries by u-step decoding

method. For the same error-correcting ability, the transmission rate in-

creases as code length increases but the decoder complexity also increases.

4.1 Non-Orthogonality of Some BCH Codes

Massey [13] in his earlier work suggested an important area of re -

search to be investigation of L-step orthogornlization procedure for block

linear codes. An interesting result is obtained in this direction. That is,

some double error-correcting BCH codes cannot be L-step orthogonalized.

The proof essentially consists of showing no set of d-1 (where d is the mii'imum

distance of the code) parity checks orthogonal on any noise bit or sum oi noise

bits, can be formed. We first represent a necessary condition for a code to

be L-step orthogonalized as follows.

Lemma 4. 1 Let go(x) be the generator polynomial of a binary code C0 -0

and g 0(l) # 0. Let Coe be an extension code u, CO obtained by adding an

overall parity check as its first digit to C0  If C is invariant under a

transitive permutation group, a necessary condition for CO to be L-step
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orthogonalized is that

n+1 3 1 d'(4.1)
2 -(d - 14

where n is the code length, d is the minimum distance of the code C d'

is the minimum distance of the dual code C of C.
0

Proof: Let x 1 ' x2 ..... xd01 (d o is an odd integer no more than d) be

the set of vectors in the code C which are used to form a set of d0 -1 parity

checks orthogonal on a selected sum of noise bits e. + e. +... + e. where
"1 2 y

e are distinct noise bits (1 < i < n). Let x be a vector which is a

sum of x1, x2 .... X - and the vector with all one entries. Let
0

wi (0 < i < d -1) be the weight or the number of 1's of the vectors x

respectively. Since d -1 is even, x must have ones in the positions

i1 , i2 , -- , iy. It is easy to verify that

d -1
0

E (wi -y)=n-y (4.2)

i=O

Without loss of generality, let

W < w 2 <- -< Wd -1 (4.3)
0

From equaton (4.2) and (4. 3), we ha ve

w +(d -1) nY - 0 d - (4 .4)
0

We now want to show that

w +wl -(d'-1)

2 > Y (4.5)

I2

I
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and

wO< n-d' (4.6)
0-

in order to prove this lemma. Let C' be a code generated by (x-1) go(x)

where g0 (x) is the generator polynomial of C . Let C' be the dual of Co -

C' is a cede contains the code C as a subcode. C' contains the vector with

all one entries, hence C' contains x and x0 + x as code words. The

weight of x° + x1 is w o +w 1 - 2y. Equations (4.5) can be established if

we show that the minimum distance of the code C' is d' -1. C is a subcode

of C' and C contains all the code words of C' which have even weight. It is

easy to verify that the extension code C' of C' obtained by adding an overall
e

parity check as its first digit to the code C' is a dual code of C oe. Coc

is a r-de which is invariant under a transitive permutation group implies

that its dual code also invariant under the same transitive permutation group

(c.f. Theorem 11. 1 of reference [14]). d' is the minimum distance of C,

then d' is an even integer and d' is also the minimum distance of C'. Since
e

C' is invarient under a transitive group, there exists a vector v in C' such
e e e

that the first digit of ve is nonzero and the weight of ve is d'. The vector

v obtained by deleting the first digit of ve has weight equal to d'-l and v is

a code word of C' with minimum weight d'-1. Hence equation (4. 5) can be

established. The weight of x must be odd. Since the minimum even

distance of C' is d', ,he largest possible weight of x is n-d'. Hence

equation (4. 6) is established.

From equations (4.4) and (4. 5)

W +w -(d'-1) w +(do -  I - n
2> d (4.)

0
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Rearrange equation (4.7), we have

) .> 1 n d-1 (4.8)

1 1 d' n d'-1 410

0 0

Rearranging equation (4. 10), we have

1> - - d' ) d' (4.11)

T - -1  T --1

0

From the property that C' is invariant under a transitive pelmutation group,
e

we have shown the minimum distance of C' is odd (d'-1 is odd). Similarly,
we can show d is an odd integer since Coe is invariant under a transitive

permutation group. d must equal to d when C0 can be L-step orthogonalized.

The lemma is proved by t:quation (4. 11).

From equation (4. 11)

J-d-I< 2d' (4. 12)

0 3d'-n-I

The maximum number of parity checks orthogonai on any noise bit or

sum of noise bits is no more than J.

Let a be a primitive root of GF(2m). A binary NBCH code C0 is
1 2 d-1

defined to be the code consists of a , a 2...... consecutive rocts.

The extension code Coe obtained by adding an overall parity check to C0

as its first digit is invariant under a transitive group. Lemma 4.1 is

applicable to this code.

.
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Theorem 4. 1 All double error-correcting binary NBCH codes CO

cannot be L-step orthogonalized for m > 7.

Proof: The minimum distance of these code is at least 5. Let do = 5,

and using equation (4. 11), we have

(2 m - 1) + 1 3 I

2 > ( ) (4.13)

or 2 m+1 > 5d'

For m to be odd, d' is equal to 2 m-1 .2 (m+ 1)/2-1 [8] Equation (4. 13)

becomes

2 m+1 > 5 (2 m1 2(m+ 1)/2-1)

5or 2(m+1)/2-1 > 2m -

This condition cannot be satisfied for m greater than or equal to 7.

For m to be even, d' is equal to 2 m1 - 2 (m+2)/21 Equation

I+ m1 +2/-m/ 11 (4. 13)becomes 2m +  >5(2 m 1 -2( m +2)/21 )or 5' 2
m /2> 2m

'l

This condition cannot be satisfied for m greater than or equal to 8.

j Thus we have proved the theorem.

In this theorem, we have shown that all double error-correcting NBCH

I codes C cannot be L-step orthogonalized for m > 7. In next, we show

that the binary double error-correcting NBCH code CO cannot be L-step

orthogonalized for m equal to 5. The dual C of C has vectors of the

I following four possible weights 0, 12, 16, 20 [8] . We use same notation as

in the previous lemma and theorem. A vector in the code C' but not in C

S]has weight equal to 11, 15, 19, 31.

J
I
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(w o-Y) + (w 1 - Y) + (w 2 - y) +(w 3 -y) + (wN y) n-y (4.14)

(w 0 - y)+ (w 1 -y)>11 (4.15)

(w 1 - y) +(w 2 -y) >12 (4.16)

Let wi- < 2 <w 3 <w 4 P equation (4.14) implies

y > (w 0+ w1 +3w 2 - 31)/4 (4. 17)

Equations (4. 15) and (4. 16) imply that

y < (w 0+ w 1 -11)/2 (4. 18)

y < (w 1 +w, 2 12)/2 (4. 19)

With the restrictions that w 1 < w 2 P w. (i= 1,2) must equal 12, 16, or

20, w 0must equal to 11, 15, or 19, one can verify that there does not exist

a positive integer y such that equations (4. 17), (4. 18) and (4. 19) are satisfied

simultaneously. This shows that C 0cannot he 1.-step orthogonalized for

4.2 One -Step Majority De~codi ng of Some Cyclic Codes

In this section, we show a method to decode all cyclic codes whose

extension 'odes are invariant under a doubly transitive permutation group

and also to decode the cyclic codes which have an adr-lition parity check bit

than the previous ones.

m- SLet C 0 be a q-ary code with leingth n-qm Iland let q -p where p

is a prime number. The extended code C of C is a code with an overalloe 0

parity check to C 0as its first digit. The first position of a code vector in

C oeIs numbered 0, the I -th position for i > 1 is numbered a 12where a
isaprimitive element in GF(qm). Thus the q mpositions of a code vector
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is numbered by qm elements in GF(qm). An affine transformation with

parameters a, b belong GF(q m), a :# 0 is a permutation which carries the

symbols in position X to position aX + b. Such a transformation can be

applied to any extended code associated with a primitive element of GF(qm

A code will be called invariant under the affine group if every affine per-

mutation carries every code word into "nother code word. The necessary

and sufficient condition for a code to be invariant under the affine group is as

follows [6].

Let g(x) be the generator polynomial of Co . Let i be a positive

integer less than q . Let J(i) be the set of nonzero integers j such that

each coefficient of the p-ary representation of i is greater than or equal to

the corresponding one of j. The extended code C is invariant under the
oe

affine group of permutations if and only if for every a i which is a root of

the generator polynomial g(x), for every j belongs J(i), a is also a root

of g(x) and g(l) - 0. Let C be the dual of Co .  Let h(x) be the generator

polynomial of C. Let h*(x) be the reciprocal polynomial of h(x). Then

~m

h*(W g(x) -1 -

(x-l) is not a factor of g(x) implies that x-l is a factor of h(x). Let C' be

a code generated by h(x) / (x-1), then the extension code C' is invariant
e

under the affine group of transformations.

We are concerned with the decoding of the codes C and C'. Kasami
d -,

et al 7] have shown the connection between binary codes which are invariant

under a doubly transitive group and their connection with balanced incomplete

block design. Rudolph has decoded projective geometry codes by using the

property of balanced incomplete block design. The argument to prove the

following Lemma is similar to their argument.

t
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Lemma 4.2 Let n be the code length of the code C. Let k1 be the minimum

weight of a vector in Co where Co is an extension code of C O which is a

dual of C. C can be decoded by one step decotng to the distance of
[n/(k I - l)] + I.

Proof: Let v be a vector of minimum weight kI in Coe. Let E be the

equivalence class of v under the doubly transitive permutation group. Let

A be a matrix whose rows are vectors in E. Since the permutation group

is doubly transitive, there exists a permutation which will permute i -th

column of A to the i 1 -th column of A and the j-th column of A to the j1 -th

column of A. Since the permutation leaves the rows of A invariant except

it rearranges the rows of A, it follows that the numbers of nonzero

entries in the i 1 -th column and i -th column are equal. The aumber of

nonzero entries in corresponding positions i and j columns are equal to the

nonzero entries in i I and j, columns. Let the number of nonzero elements

in any column be r and the number of nonzero elements in corresponding

positions of any two columns be A. Let A be the matrix obtained by

deleting the first column of A. Let A2 be the matrix obtained by deleting

all rows of A1 whose leftmost entries are zero. A1 is a r by n matrix

with all entries in the first column nonzero and exactly A number of nonzero

entries in any other column. The row vectors of A1 are parity checks of

the code C. Hence C can be decoded to the distance [r/AJ + 1 If we

change all the nonzero entries of the matrix A into I, the new matrix is an

incidence matrix of a balance incomplete block design.

Thus

n/W(k 1) = r/.

We have proved the lemma.
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In next, we show how to decode a code C' which has one more

1. information digit than that of C.

Lemma 4.3 Let C' be a cyclic code whose generator polynomial is

h(x) / (x-l) where h(x) is the generator polynomial of the code C in lemma

4.2. C' can be decoded to the distance [n/(kl- 1)] by one step decoding

method.

Proof- Let the dual of C' be C', then C' must be subcode of C o. We want
o0

to sh,~w that the row vector of the matrix A (defined in the proof of lemia

A. 2) is in the code C' if and only if the overall parity check bit added to this
0

row vector is equal to zero. The total number of such vectors is r - A

because the number of nonzero elements in corresponding positions of ,ie

first two columns of the matrix A is A. Consider the (r - A) x n submatrix

of A 1 whose rows consist of these r - A vectors, all entries in the first

column is nonzero and at most A, number of nonzero entries in any ot.er

column. We can decode C' to the distance n/-(k I] by the same

argument of lemma 4. 2 provided all row vectors of the submatrix are in C'.
0

We prove this as follows. The generator matrix of C' had the fAi-r

e0
i el el )n

e . . 4 20)

ea • jn

where e. are positive integers.
iJ

The generator matrix of Coe must equal to

e e

M2 I- 0 n a e. )fl (4.21)

e. e.
0.. ( 19n
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because the generator matrix of C is the matrix obtained by deleting the
0

first column of the matrix M2 and the element in the first column is indeed

an overall parity check. Any vector v in Coe whose first digit is equal to

zero can be obtained by linear combination of the vectors from the second

row to the last r, w of the matrix M2 and vice versa. By deleting the first

row and the first column of the matrix M2, we can obtain the matrix M1.

The row vector of A is in the code C' if and only if the overall parity check

bit added to this row vector is equal to zero. This proves the lemma.

The obvious reason to choose the vector v of the minimum weight

k1 in Coe is that we want the integer [n/(k1 - 1)] to be as large as possible

for a fixed n.

The extension codes of NBCH codes are known to be invariant under

the doubly transitive affine group. The minimum distances of some binary

NBCH codes are known from references [15], we can apply lemmas 4. 2 and

4.3 to these codes. Let n, k, d denote the code length, the number of

information digits and the guaranteed decodable distance by one step decoding

method. Some binary BCH code with parameters (n, k, d1 ) are listed in

table 4. 1.

Recall that the Euclidean geometry code C with parameters m, u, q
h

is defined as the cyclic code whose generator polynom-ial contains a as

roots for h satisfying the condition 0 < w q( hp 1 ) < (m-u) (q-l) for 0< <s-1

w-t e a is a primitive element of GF(q m ) and q w p S. The dual C of the

Euclidean geometry code C has the generator polynomial contains

a as roots for h satisfying the condition 0< w q(h) < u(q-1). The

-- q

___
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Table 4. 1 Binary BCH Codes by One Step Detocing Method

n, k, d n, k, d

31 10 7 31 11 6

63 9 22 63 10 21

63 15 13 63 16 12

63 23 I0 63 24 9

63 45 5 63 46 4

127 14 26 127 15 2'

255 12 86 255 13 85

253 6 52 ?55 17 i1

255 20 52 2S5 21

511 18 103 511 19 102

1023 15 342 1023 16 341

1023 20 205 1023 21 204

extension code, Coe of the code C0 satisfies the n ,essary and sufficient

condition for a code to be invarient under the dcubly ransitive affine group.

The C contains all u-dimensional flats of EG(m, q). The weight of aoe

vector v associated with an u-dimensional flat is q". The q-ary (m-u)(q-1)-th

order Reed-Muller code contains q-ary code Coe as a sibcude. The mini-

mum distance of the q-ary (m-u) (q-1)-th order Reed-MCller code is qU[6]•

Thus the minimum weight k1 of ue vector v in Coe is q U We can apply

lemma 4.2 to Euclidean geometry code C and the gua-ranteed decodable

distance is

jd - [(qm- 1)/ (qu -1)]+1 (4.22)

The modified Euclidean geometry ccde has one more information

digit than the corresponding Euclidean geometry code. The guaranteed

decodable uistance is [(qm_ 1) / (qU. 1)] by lemrma 4.3.

i
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4.3 Comparisons and Remarks

The guaranteed decodable distance of Euclidean geometry code C by

one-step decoding is d1 =[(qm- 1) / (qU- 1)] + 1 which is less than or

equal to the guaranteed decodable distance d by u-step decoding.

d-2+q+.... +qm-u (4.23)

because

2 + q +.... + qm-U + U U- >+- 1 q i d
q -q IT,1

When u is not equal to one, d is greater than d1. The decoder for one-step

decoding method may be simpler than the decoder for u-step decoding method.

For example, when u equal to m-I the guaranteed decodable distance of

Euclidean geometry code C is 1 + q for one -step decoding method but 2 + q for

(m-1)-step orthogonalization procedure. The decoder for the former method

is simpler than the decoder for the latter method. The guaranteed decodable

distances for a Euclidean geometry code and a projective geometry code with

same parameters are both equal to d for u-step decoding method and both equal

to d1 for one-step decoding method. We list Euclidean geometry codes and

projective geometry codes together for comparison purposes as Table 4. 2.

In this table, q, m, u are the parameters of the Finite geometry codes. n

and k under the column PG(or EG) are the code length and the number ct

information digits of projective geometry code (or Euclidean geometry code)

respectively. The guaranteed decodable distances d by u-step decoding

method and d1 by 1 step decoding method are listed in the last two columns

of table 4.2.

i
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Table 4.2 Comparison of Projective Geometry Codes and Euclidean

Geometry Codes

IPG EG u -step 1-step

q m u n k n k d d

22 1 21 11 15 6 6 6

3 2 85 68 63 47 6 5

3 1 85 24 63 12 22 22

4 3 341 315 255 230 6 5

4 2 341 195 255 126 22 18

4 1 341 45 255 20 86 86

5 4 I 1365 1328 1023 987 6 5

5 3 1365 1063 1023 747 22 17

5 2 1365 483 1023 287 86 69

5 1 1365 78 1023 32 342 342

2 2 1 73 45 63 36 10 10

3 2 ! 585 520 511 447 10 9

3 1 585 184 511 138 74 74

4 3 4681 4555 4095 3970 10 9

4 2 4681 3105 4095 2584 74 66

4 1 4681 590 4095 405 586 586

24 2 1 273 191 255 174 18 18

3 2 4369 4112 4095 3839 18 17

3 1 4369 1568 4095 1376 274 274

5 ,,-I
4 I25 2 1 1057 813 1023 780 34 34

62 1 4161 3431 4095 336b 66 66

I
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Let the code length, the number of information digits and the number of

check digits of the Euclidean geometry code with parameters q, m (m=m'), u

be ne , ke and re respectively. Let those of the projective geometry code with

same parameters be n p, kp and rp respectively. Let those of the projective

geometry code with same q and u but m=m'-I be np, kP and r' respectively.
p p

From Table 4. 2, we observed that for m'- > u

k =k -Ik' - 1 (4.24)
pp

qm' ' m' -1
Since n = -1, n= + q +... + qm and n' = 1 + q +... + q thereforee p p

n = -n'p - 1 (4.25)

From equations (4. 24) and (4. 25), the parity checks of these codes satisfy the

relation

r = r - r' (4.26)
e pp

We observed that the number of parity check r when m'-1 equal to u is

r ( p+m'-i s (4.27)

e mn

These observations can be explained as follows. The integer rp is equal to

the number of distinct elements in the set A which c )esists of integers a such

that m+ 1that 0<a< q -I

w (ap1 ) -v (q-l) , 0 <j<s-1, O< v <(m'-u) (4.28)
qj

(c. f. theorem 3.1)

The integer r' is equal to the number of distinct elements in the set E which

consists of integers b such that
In

0<b<q -1

w (bp 3) v (q-l). 0 <j < s-1, 0< ,, < (m-l-u) (4.29)

The integer re is equal to the number of distinct elements in the set C

which consists of integers c such that

I
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0< c< qml
(4.30)

0 < wq( c )<(m'-u) (q-1), 0 < j <s-1

(c.f. theorem 2. 1)

Clearly the set B is a subset of A. We first show that

r < r -r' (4.31)

e- p p

by showing for a distiict c in the set C, there corresponds c distinct h in the

set A but not the set B. Let

m' -1

C= Z hq 0 <h< 1 (4.32)

i=0

be an integer in C. Let

h=c+h ,q M  (4.33)

where hm , is as folloN s.

In case (1), wq(c) is not a multiple of (q-1). Let hm t be a positive

integer less than q-1 and hm , + Wq (c) is a multiple of (q-1). In case (2),

w q(c) is a multiple of (j-i), then

qq

Wq (c P )=v.i (q-1) , 0< j < s-i, 0 < v.i <(m, -U) (4.34)

If v. is less than (m'-u) for all j, let hi , equal to q-1. If there exist oneII
j such that v. is equal to (m'-u), let hm equal to zero.I

It is easy to verify that the integer h defined in equation (4. 33) is in the

set A but not the set B. Two different elements in the set C will correspond

to two different elements in the set A but not the set B. Hence equation(4. 31)

is established. For any element h' is the set A but not the set B, h' can be
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written as

Itm h'= h'q O h'<

h'q4 0 < < q-1 (4.35)

i=O

It is easy to verify that

m' -1

co = hi q (4.36)

i=o

is in the set C. Hence

r > r -r' (4.37)
e- p P

Thus equation (4.26) is established.

When m'-1 equals to u,

p + m'-I sr = m+(, ) (4.38)

(c. f. equation (3.47)) and

~rp, = 1

Hen:e c t4 ,a 44 .

We list the transmissiun rate (k/n) of some codes listed in Table 4. 2

with same guaranteed decodable distance d in Table 4.3.

In table 4.3, u is the number of steps required for decoding. The

quantity in parentueses is k/n. For same d, the transmission rate in-

creases. The decoder complexity increases as the code length, the number

of information digits, the number of steps required for decoding increase.I
II

I
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V. APPLICATION OF CODING THEORY TO INFORMATION RETRIEVAL

5.1 Introduction

An entry in theindex file for the document collection typically includes

an identification number for the document together with a list of descriptors

or attributes characterizing that particular document. The descriptors are

commonly chosen from a dictionary and an upper bound is placed on the

number of descriptors which may be chosen to characterize any single

document. A "query" to such a collection is again a list of descriptors

from the dictionary. A typical dictionary might contain a number of N

3 4descriptors between 10 and 0 and the maximum number of descriptors

would normally fall between 5 and 10 [9.

The information retrieval problem considered here may be defined

as follows: Given a query, we wish to devise a process by obtaining a list

of documents such that each of these has all the descriptors possessed by the

query. In other to automate the retrieval process, it is necessary to encode

both document and query data in some form suitable for automatic process.

Two important methods for doing this have been pr , , - 'd. ax:: iz aLLng

zero -false -drop codes proposed by Kautz and Singleton [9]. Another one

is derived from algebraic coding theory by Chien and Frazer [3]. Encoding

by the former method usually has longer digit representation than the latter

method. The time required to retrieval is comparatively less by using

zero-false -drop code. We now give a brief summary of these two codes.

A zero-false-drop code of order t (ZFDt ) is a set of n-digit binary code

words satisfying the property that every sum of up to t different code words

logically include no other code word where the sum of the n-digit binary words

is their digit by digit Boolean sum. Let each of the N descriptors in the

!
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dictionary be assigned a unique n-digit binary code word of ZFDt code.

Each document is represented by an n-digit word which ib obtained by forming

the digit by digit Boolean sum of the code words of all of its constituent des-

criptors. The query is represented in identical fashion. It follows directly

from the property of the ZFD t code that as long as no more than t des-

criptors are associated with any one document, the query iq ligically included

in a particular document word if and only if all of the query descriptors are

included among the descriptors associated with the document. Thus ZFDt

code can be used for information retrieval file and guarantees no false drop.

The method of encoding documents and queries from the algebraic

structure of linear error-correcting code are as follows:

Let V 1 be a linear code with t-error -correcting ability. Let H be

the parity check matrix of V1 . The row space of H is in the null space V2
ofV Th2

of V1 .  The syndrome of a vector v is defined to be vHT where H' is the

transpose of the matrix H. If the code length of V1 is N1 which id greater

than N, the total number of descriptors in the dictionary, we can reprcsent

each descriptor as a column of H, then each descriptor is represented by

binary n-tuples where n is the number of the parity check in the code. A

document (or a query) iQ rpre~ented by mod-two linear combination of the

n-tuples each of which corresponds to a constituting descriptor o. the docu-

merit. A query is represented in a similar manner. We limit the maximum

number of descriptors to characterize each document to t. The documents

can be represented un-ambiguously because no two distinct linear combinations

of t or fewer columns of H are equal. The retrieval method is based on the

following argument. In an error-correcting code, we usually choose the

vector with minimum weight in the coset as a coset leader. A coset leader

41
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Cd is said to cove" a cost leader Cq if Cd contains 1 whenever Cq contains

I in any digit positiun. G d covers Cq if and only if w(Cd + Cq ) + W(Cq )

w (Cd) where w(x) = weight of the coset leader x. We can consider each

digit position of a coset leader corresponding to a descriptor in the dictionary.

A coset leader Cd corresponds to a document if Cd has l's in the digit.

positions corresponding to constituting descriptors of the document, and has

O's in all other digit positions. A coset leader Cq corresponding to a query

in similar way. A document Cd covers a query if and only if w(Cd + C q) +

W(C q) = w(Cd). In information retrieval, we do not have the coset leader

Cd and Cq explicitly available to us for testing. Instead we have syndromes

sd and sq of Cd and Cq respectively. From previous discussion, it is

clea," that the main computational problem in our retrieval process is that of

determining whether f(sa+q ) = f(s d) -f(sq ) where f(s.) is dcfi,.d to be

equal to w(x). In coding terminology, computing f(sd+q ) is equivalent to

finding the weight of the coset leader from the syndrome of the coset.

Details of a retrieval method derived from algebraic BCH code decoding can

be found in reference [3].

5.2 Zero-False-Drop Codes Derived From Finite Geometries

Two classes of zero-false-drop codes can be constructed from finite

geometries. One is derived ;rom projective geometxies and the other one

is derived from Euclidean geometries.

Kautz and SingletonL9] have derived a bound for the order of zero-lalse

drop code of constant weight codes. Let w be the weight of any codt- wor6.

Let iA be the dot product of any pair of code words. Let x be the

maximum number of such W s. If w> tPmx + 1, then any code word

cannot possibly be containLd in the sum of any t other code words since i,
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overlaps each of these other code words in ne more than A max positions.

The constant weight code has order t as d zero false drop code such that

t~[i~n;a~ 1(5.1)
where the bracket indicates "the integer part of".

The projective geometry of dimension m over GF(q), i.e. PG(m, q)

has number of points equal to

~m+1
= - (5.2)

q-1

Any u-space (1< u < m-1) of PG(m,q) has number of points equal to

W= q (5.3)
ql

1 The total number of u-spaces of PG(m, q) [I1] is

-(qm+ 1_ q

N = i=O N(u, rn,q (5.4)
u

TT (qU+ qjiJ=0

Let S be a matrix whose rows correspond to the u-space

(1 < u < m-1) of PG(m, q). The matrix S has N rows, n columns and w

ones per row. We can regard each row of S as a code word of a zero -false-

drop code. This is a constant weight .-ode. The intersection of two u-

spaces is a space of dimension u-I or less. Hence

ma 22 1+q+.. +qU-I1 (5.5)

maIQ
I
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From equation (5. 4),

'iW~L r ]=li +..lq +qU'l 1 50

t> W Iu-i q (5.6)
LmaxJ 1+qL

We now show that t is equal to q. Let vu be a code word. v ucorre

sponds to an u-space. Total number of (u-1)-spaces contained in this u-

space orthogonal on a particular (u-2)-space is

(I+q+ +qU) - (I+q+... +qU-2(5.7)

(1+q+... +qU1) -(l+q+... +qU-2)

Let v(i) be a code word not equal to v and v (i) contains i -th
u u

(1 < i < 1 + q) of these (u - 1)-spaces which are contained in vu. The code

word v is logically included in 1 + q different code words v (1 < i < I + q).

Hence

t = q (5.8)

We obtain ZFD codes for any power of prime q. There exists n-I

different codes for a fixed m and q. The code lengths n for these codes are

equal. Among these codes, the best one is the code with maximum number

of code words N. From equation (5. 4), the maximum N occurs when

U m (5.9)

Similarly, we can take S to be a matrix whose rows correspond to

u-dimensional flats of the Euclidean geometry of dimension n1 over CF(q),

or EG(m,q). The number of rows N, the number of columns n, the number

of ones per row will take the following values [11]

n qm (5. 10)

N N (u, ri, q) - N(u, i-,q) (5. 11)

w= qu (5. 12)
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Two u-dimensional flats EG(m, q) intersect an u-dimensional flat

(0 < u' < u) or do not intersect at all. Hence

q (5.13)
max

arid

a-d 2max [-_-1] =q-1 (5.14)

d, d2  d u m
Let a , a a.... a be linearly independent over GF(q ).

Let vu be a vector corresponding to an u-dimensional flat consists of qu

points

a 1  +a 2 Ct + .... +au a (5.15)

where a.( 1 < i < u) runs independently over GF(q).1do

Leta d be a point not in this EG(m,q). Let v(i ) (1< i< q)beU - -

vectors corresponding to u-dimensional flats each of which consists of points

a° a +a 1 a +... +au a d +i q  u (5.16)

where a. (0 < i < u-i) runs independently over GF(q)and q1 , q2 ... q

are distinct elements in GF(q).

The code word vu is logically included in the sum of these code words.

Hence

t =q - 1 (5.17)

There exists iu-1 different ZFD -1 codes for a fixed m andI q. The

code length n and the order of superimposed code t (t - q-1) is fixed. Among

these codes, the best one is the coke such that the numIbe- of code words N is

the largest. We list some zero-false-drop codes derived from

finite geometries in Table 5. 1.



Table 5. 1 Zero-False-Drop Codes Derived From Finite Geometries

Projective Geometry Zero-False-Drop Codes

N 35 155 1395 11811 97155 130 1210__ 33880

is 31 63 127 255 40 121 364

t 2 2 2 2 3  3 I

N 357 5797 806 2850 4745

n 85 341 156 400 585

t 4 4 5 7, 8

Euclidean Geometry Zero-False-Drop Codes

N 117 1080 32670 336 5440 775 2793 4672

- I
n 27 81 243 64 26 125 343 512

t 2 2 2 3 3 4 6

5.3 A Method for Encoding and Retrieval of Documents

A method of encoding and retrieval of documents derivec from

algebraic coding theory is introduced in tile first section. A new method

also derived from algebraic coding theory will be presented in this section.

A comparison will be made with the previous method. LUt n be the code

length of a t-error-correcting BCIH code. Let a e the primitive n-th

root of unity. If the total number of the descriptors in the dictionary is

J-Iless than n, w.' can represent the j-th descriptors b a If a document
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k id () , weproposeto
has wd number of descriptors Xd), x d) Xwd

represent the document the sequence of digits a =jjP, O2,.., w where
() (d) d Ia

a. are elemently symmetrical functions of X d), xd .. d) .If a
1 2wd

query has Wq number of descriptors q  q  ... , the deter-
q

mination of whether a document covers a query becomes to determine
Wd-1 w d

whether Tr -a x . ......... +a (-x) + (-1) contains X(q)

wd wd -1 

as roots. The hardware required to realize this decision is considerably

simpler than BCH cocde decoder which is required for retrieval if the docu-

ment is represented by the syndrome. The hardward required to encode

a is no more complicated than the hardware required to encode sd. An

information system described in reference L3J utilizes the variable length

coding to minirize system requirements in both storage and computation.

The new representation of document is also a variabie length scheme, and

the storage required is minimum. The computation seems to be simpler

than to determine the weight of coset leader from the syndrome of a document

plus a query.

5.4 On the Use of Finite Geometry Codes by Chien's Formulation

By using Chien's formulation [31, the main task to determine whether

a document covers a query is equivalent to find the weight of coset leader

from the syndrome. For the codes constructed from finite geometries,

Reed Decoding Algorithm can be applied. The determination of weight of

coset leader from syndrome if codes constructed from finite geometries

instead of BCH codes are used. In general, the efficiency of BCH code is

higher than that of finite geometry code but the difference is slight in many

cases including difference -set cyclic codes [17] . We can apply these codes
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constructed from finite geometries for information retrieval. We first

introduce Reed Decoding Algorithm and show that, in some cases, the

determination of the weight of coset leader from syndrome is simpler than

using Reed Decoding Algorithm.

Let L be a nxb matrix of l's and O's whose b columns are elements of

the null space V2 of an (n, k) binary code V1 . Any vector of the null space is

essentially a parity check rule satisfied by code vectors. For any received

vector v, vL is a vector of b l's and O's which contains l's in the positions

corresponding parity check rules that v fails to satisfy. Now consider the

result of mhltiplying (vL) by LT as real numbers. The result will be a

vector of n components that are integers.

e(v) = (vL) LT (5.18)

There will be a contribution of 1 in the j -th component of e for each

column of L which fails as a parity check and contain a 1 in its j -th position.

Thus the j -th component of e is the number of failures of parity checks that

involve the j -th symbol in the code vectors. Let F (v) be a vector whosej -th

component is 1 if the j -th component e(v) exceed certain threshold and 0

otherwise, e(v) is considered to be the error vector. The number of l's

in e(v) is the number of errors. For a projective geometry code associated

with u-spaces of PG(m,q), let L be the matrix whose columns corresponding

to u-spaces. For an Euclidean geometry code associated with u-dimensional

flats of EG(m,q), let L be the matrix whose columns corresponding to the

u-dimensional flats with first digit deleted. If we let t equal to

[(qm-) /2 (qu-l)] and set threshold at r/2 where r is the number of l's

in the row of L, e(v) is the error vector provided the number of errors oc-

curred is no more than t. In information retrieval system, let the syndrome
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of a document plus a query be sd+ we actually compute e(sd+q) Sd+qMLT

instead of e(v) = vL LT where M is a matrix such that vL = sd+ qM-

In some cases, we need to compute sd+q M only in order to distinguish

the weight of coset leader from the syndrome, the computation of sd+ q M is

much simpler than the computation of sd+q M LT.

We demonstrate this as follows: Let L be the matrix whose columns

are u-spaces of PG(m, 2 S). Let v be the coset leader corresponding to

S d+ q , then vL = s d+qM. If for distinct weight of v, the number of l's

in Sd+qM is distinct, the computation of s d+ q M is sufficient to determine

the weight of coset leader from the syndrome. We now show that the weight

of sd +q M is distinct for sd+ q corresponding to the coset of weight 0, 1, 2,

or 3 for t greater than or equal to three. The computation sd +qM is

sufficient to determine the weight of coset leader from the syndrome if the

code is a triple error-correcting code.

Let w(x) denote the weight of a vector x. We have

w(sd+qM) = 0 when w(v) = 0 (5.19)

The number of l's in any row of L is r where

m
1- (2 is 1

')

r = (5.20)

(2J 1)
j=1

w(sd+qM) = r when w(v) = 1 (5.21)

The number of pairs both with l's in any two rows of L is ? where

(2 i-1)= Mu+l)
T u+ (5.22)

- j S-

j=1
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When weight of v is equal to two, the two nonzero digit positionsSdi d2
correspond to points a , a of PG(in, 2s ). The number of u-spaces

contains any one point is r and contains any two points is X. A parity

check corresponding to an u-space fails if this u-space contains one and only
d1  d2  dI

one of the points a , a The number of u-spaces containing a
~d 2

and not a is r - A. Thus

w(sd+qM) = 2(r-X) when w(v) = (5.23)

When weight of v is equal to three, the three nonzero digit positions
dI  d2  d

correspond to three points a , a and a of PG(m, 2'). Two

cases possible. In case (1), these three points are linearly dependent. If

an u-space contains two of these three points, then it must contain the third

point. Total number of u-spaces containing all three points is A. Thus

W(Sd+qM) = 3 (r-A) + A = 3r - 2X, (5.24)

In case (2), the three points are linearly independent. Le. t A be the

number of u-spaces containing these three points.

m-2
.- (2i s -1)

i =m -u+l
u-u+ (5.25)

T (2 s-.)
j=l

The number of u-spaces containing a 1 but not a 2 and a 3 is r -2A+X 1 .

The number of u-spaces containing one of the three points or all of the three

points is 3(r-2, + A1) + A1  Thus

W(Sd+qM) = 3(r - 2X + Aj1 )+ 1 = 3r - 6A + 4, 1  (5.26)

I
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t =[r/2] (5.27)

When t is greater than or equal to three

r > 6? (5.28)

From equation (5. 28),

3r -6X+4XI 1 >2r - 2X>r> 0 (5.29)

also

3r - 2? > 2r - 2? (5.30)

Thus the weight of sd+qM is distinct for sd+ q corresponding to the coset

of weight 0, 1, 2, or 3.

5.5 On the Use of Symmetry of Codes for Retrieval

One form of symmetry of a systematic code is a permutation of bit

positions in each code word (the same permutation is applied to all code words)

which preserves the code as a whole. The idea of using symmetry of the

code for information retrieval is closely related to the concept of permutation

decoding [10] . The permutations which leave the code invariant have a

desired property for information retrieval purposes. If G is a group of

permutations that leaves the code invariant, IiMn G partitions cosets into

equivalence classes. The coset leaders of the coset in the same equivalence

class have the same weight. There exists a group G1  isomorphic to

G [19] . G1 partitions the set of syndromes into orbits. If two syndromes

in the same orbit of G1 , then these corresponding cosets are in the same

equivalence class of G. That two syndromes in the same orbit implies that

their corresponding coset leaders must have the same weight. If a t-error-

correcting code can be decoded by permutation decoding and a received
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sequence has errors less or equal to t, then all the errors in this received

sequence can be moved to parity check portion by a permutation in G. In an

equivalence class under G of cosets whose coset leaders are of weight t1

which is less or equal to t, then there must be a coset leader with all its l's

in the parity check portion. The syndromes of the coset leader having

information digit portion all zero is identical to parity check portion of this

coset leader. For any syndrome corresponding coset of weight t 1 which is

less or equal to t, there exists a syndrome in the same orbit under G1 such

that the number of l's in this syndrome is t1 . It becomes clear at this

point that a t-error-coirecting code which can be decoded by permutation

decoding can be used for information retrieval purpose. Recall that a docu-

ment is represented as a syndrome in Chien's formulation and the main

computation is to determine the weight of coset leader from the syndrome.

The determination of whether a document covers a query is as follows.

We obtain a syndrome Sd+q by adding the syndrome of document sd and the

syndrome of query sq. We determine the weight of coset leader of sd+ q

by generating the syndromes in the same orbit of sd+ q under G 1. If one

of these syndromes has number of l's equal to t1 which is less or equal to t,

the weight of coset leader must be equal to t Otherwise the weight of

coset leader is larger than t. The effective use of this principle lies on a

method to generate the syndromes in the same orbit without duplication

which will be presented at the end of this sec ion. The permutation decoding

is mainly for low rate codes. If a code ha., minimum distance d equal to

2t + 1, then this code is capable of correcting t errors. If we cannot move

all errors in an error pattern with weight less than or equal to t to the parity

check portion by the permutations which leave the code invariant, the
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permutation decoding scheme does not work for this code. If we represent

the documents and queries as syndromes of this code, there eyists a syndrome

Sd+q corresponding a coset of weight less than or equal to t, but all syndromes

in the orbit of sd+ q under G has number of l's larger than t. In this

case, we need some modification in information retrieval process in order

to make use of this code. Two approaches are possible. The first approach

is as follows. We pick any syndrome in the orbit as a representative if

syndromes in this orbit corresponding coset leaders of weight less than or

equal to t and all of the syndromes have number of l's greater than t. We

store all representatives of the orbits having the preceding property and the

r-orresponding weights of the coset leaders. Given a syndrome s we

proceed to generate the syndromes in the same orbit. If one of the syndromes

has number of l's less than or equal to t, we determine the weight of coset

leader immediately. Otherwise we can do table look up to find its weight.

In this approach, we need storage to store the table which consists of the

representatives of the orbits and their corresponding weights., The approach

of this method is practical provided the table is not very large. It is possible

to save storage by the following second approach. We define a vector vc

covers a coset leader e if the information portion of vc agrees with any coset

leader e' in the equivalence class of e under G. We obtain a set of covering

vectors that cover every coset leader. We call their corresponding syndromes

the covering syndromes. For any syndrome of a document plus a query, we

can find a syndrome in the same orbit and the sum of this syndrome and a

covering syndrome will have the number of l's less than or equal to t in the

resulting syndrome. In this case, we are able to determine whether a

particular document covers a given query. The retrieval process is based

on this principle. In the second approach, one covering syndrome may
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cover several equivalence classes. The storage requirement in the second

approach is less than that in the first approach. In the first approach, we

can arrange syndromes having the same weight together in the table. We

need only to check whether the syndrome in the equivalence class of Sd+ q

j match the syndromes in the section of the table where syndromes have weight

equal to the weight of document minus the weight of query. In the second

approach, we can arrange the covering syndromes with same weight together

in the table, we need only to check whether the syndromes in the equivalence

class of Sd+ q are covered by the syndromes which have weight no more than

the weight of document minus the weight of query.

A method to generate syndromes in the same orbit without duplication

is as follows. The only known group of permutations which leaves any

binary cyclic code invariant is the group Gn generated by cyclic permutation

T and the permutation U which maps w. to 2o mod n where t" is coordinate

number labeled as 0, 1, 2, ... , n-1 [10] . If n is odded, there exists a least

integer t such that 2 t = 1 mod n and Ut = I. It is easy to check that TU = UT 2

(i. e. vTU = vUT 2 for any vector v), hence we may represent every permutation

in Gn in the form UiT j with 0 < i <t-l, 0 < j <n-i. Now every power

of Uleaves 0fixed; thus U iTj =uhTk  if and only if i =hmodtandj=k

mod n. Thus the group Gn consists of nt permutations UiT J for all i, j

such that 0 <. i <t-1 and0 < j <n-i.

Gn partitions cosets into equivalence classes. The weight preserving

group which is lsomorplhis to (GI urilititnls thu set of syndromes into orbits.

We want to gvnerate tilt' he mitifi ii' iII ht' i'htt without duplication. Otherwise

it is wasting tiflic. ri 1411141 pi tuiliiii iI) get all coset leaders in an

equivalence class withowt ,. 11111. IAt v he a ci cON leader. If the

equivalence clasm of v consi % it Iwi t icl 0'hnwtt s then all tile elements
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in the following t x n matrix are the distinct coret leaders in the equivalence

class.

[VUiTJ Itxn (5.31)

where 0 < i <t-l, 0 <j < n-1.

If the equivalence class of v does not have nt distinct elements, the

distinct elements can be obtained as follows.

eLet e be the smallest positive integer such that vT = v I and t' be

the smallest positive integer such that vUt' = vTj for some j. The

equivalence class of v containing the elements

vUiT J  for 0 <i <t'-1, 0 < j < e -1 (5.32)

The proof is as follows. The elements in any row are just cyclic

shift of each other. If t' is the smallest integer such that vUto = vT j for

some j. The elements in t'+ 1-th row of matrix (5.31) are identical to the

elements in the first row of matrix (5. 31). The elements in the to + 2 row

is identical to the elements in the second row etc. If the row consists of
i I  i2

vUI is identical to the row consists of vU2 where 0< i < i2 < t'-l, then

the row consists of vU is identical to the first row. This is a contra-

diction because i2 - i1 < t'. Thus the first t' rows of matrix (5.31) are

the only distinct rows. We define the period of a vector v to be the smallest

integer e such that vTe = v1. We need to show that the period of v is equal

i
to the period of vUi

Let v(x) be a polynomial whose coefficients corresponding to v , and

the period of v bee. Let v(x 2 ) be a polynomial whose coefficients corre-

sponding to vU and the period of vU be e'.
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x ev(x) = v(x) mod xn - 1 (5.33)

implies that

x ev(x) = x e(v(x) )2 = (x v(x) ) v(x) = v(x) v(x) = v(x2) mod xn - 1 (5.34)

Therefore

e' <e (5.35)

' x2 x2(.6
X v(x)--v(x) mode x - 1 (5.36)

implies that

~el e '(2t ) el ( 2 t= et 2 2t-2
e' =tv(x) M xe (v(x) x (v(x)) (v(x))

=xe v(x 2 ) (v(x)) 2 2  v(x 2 ) (V(x) 2 2  v(x) mod xn I (5.37)

Therefore

e' > e (5.38)

From equations (5. 35) and (5.38)

e' = e (5.39)

We have shown that e' = e for i = 1. Similar argument

will enable us to prove that vU i and (vU i)U have same period, hence v and vU i

have same period for any i.

Thus we have shown that the equivalence class of v containing the

elements defined in equation (5. 32).

5.6 Investigation of Using Concatenated Codes

In Chien's formulation, we represent the descriptors by the columns of

the parity check matrix of a t-error-correcting code where t is the maximum

number of descriptors allowed by any document. It is easy to verify that a

code V1 obtained by joining severial t-error -correcting codes is also capable

11
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of correcting t-errors, therefore we can represent the descriptors by the

parity check matrix of Vi. The use of multiple copies of a single code will

simplify the computational process but on the other hand, will require larger

addresses. The situation is roughly as follows.

If one BCH code with length equal to 2- 1 is used, the number of

parity check digit is mt. Now if we use 2 number of the same code with

code length 2m m -1. The number of allowable descriptors in the dictionary

is 2  -m(2 -1) which is a little less than 2m - 1 when m is much great,"

that m'. Let £ equal to 2
m . We will show that the fractional amount

of work required by using 9 codes compared with that required by using one

code for each different weight of documents is C2DZC2 where D is the
k  k

weight of the document and the Cis are the coefficients of the terms in the

D
expansion of (x 1 + x2 +... + x) D

. To illustrate, for D = 10, the fractional

amount of work by using four copies is 0.01. The detail derivation of the

formula and a curve for showing the percentage amount of work iequired by

using Z BCH codes as con-pared with that of one BCH code for different

weights of a document is as follows.

Let D be the weight of a document and let Q be the weight of a query.

If D is greater than Q, we can determine whether the document covers the

query by comparing the syndromes correspondipg to the cosets of weight D-Q.

Let A. be the number of cosets of weight i, then Ai ( n ) where n is the code

length. The number of comparison is A. We can use a concatenated code

obtained by joining two codes together. Given a query of weight Q with

weight Q1 in the first section and weight Q-Q 1 in the second section. We do

not need to test all the documents of weight D which is greater than Q. We

need only to tes, the documents of weight D and with weight D in the first
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section where Q< D < D-Q + Q1, For a document of weight D with

weight D1 on the first section, we need to make rou ,hly ( DQ ) A
1 D1 - D-Q

comparisons to determine whether a document covers a query. We assume

the probability of occurrence of each descriptor to be equal. The percentage

of documents of weight D1 on the first section and D-D 1 on the second section

D Din all documents of weight D is (D )/2 . Let 02, 01 be the total amountD11

of work for testing all documents of weight D by using two, one codes

respectively, Then

D-Q
0 2 Q1 < ") )Q+Q1 /Dl '- 1) D 1)  i= 1D A)i Q 1) (.0

= Q D I 2D~q()
2  2  22DQ (5.40)

The probability of a query with weight QI in the first section and Q-Q, in the

second section is approximately ( Q) / 2Q. On the average the percentage
Q1

amount of work for a query of weight Q is

D-Q D

QfI(l IZ KD:Q)(D) LI (D)2

27- 22D-Q 2 kQI=0 -Jk

where Cs are the coefficients oi the terms in the expansion of (x1 + x2)

Generally, if we use a concatmnated code obtained by joining 1 BCH

codes together. The fractional amount of work required by using a
code2D and L) Bis tohe weightt

concatenated code and a BCH code is C wher. D is the weight

of the document and the C ks are the coefficients of the terms in the cxpansion

of (x1 + x2 ... + xt )D. The dcrivation of tUs fornmular is similar to the
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derivation of the formula for i = 2 case. The percentage amount of work

using £ BCH codes comparing with one BCH code under different weight of

documents is plotted in Fig. 1. The curves are independent of the weight

of a query.
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Fig. 1. The percentage amount of work required by using 2 BCH
codes as compared with that of one BCH code for different
weights of a document.
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VI. CONCLUSIONS AND FURTHER PROBLEMS

6.1 Conclusions

Two related classes of codes derived from Euclidean geometries have

been found. These codes can be u-step decoded by threshold decoding.

These codes are comparable to projective geometry codes which are moder -

ately efficient random -error -correcting codes for practical values of code

length and rate and can be decoded with a relatively modest amount of equip-

ment. Hence it appears that these codes may be suicable for use in error

control systems requiring random-error correction. The polynomial version

of Rudolph's projective geometry codes has been found for practial values of

code length and rate. It is important to find the polynomial version of a cyclic

code because we need to know the generator polynomial for encorlina purposes

and furthermore the number of information digits can be determined easily

from the generator polynomial. One-step threshold decoding using not

necessarily orthogonal parity checks is found to be applicable to BCH codes

and codes derived from Euclidean geometries. We found that it is possible

to improve upon Rudolph's decoding methed in some cases. If projective

geometry codes, Euclidean geometry codes, and BCH ;odes are decoded by

one-step threshold decoding methods, their efficiency and error-correcting

ability are comparable. Two new classes of zero-false-drop codes have

been found which compare favorably with the previously known classes.

Several results related to the application of algebraic coding theory are ob-

tained. They may be useful in a practical information retrieval system.

6.2 Further Research Areas

Because of the easy implementation of threshold decoder and abundant

results on the construction of threshold-decodable codes, it appears that
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threshold decoding will continue to be a promising area of research directed

toward improving the reliability of data transmission in communication systems.

Some promising areas for future research are:

1. To find more powerful threshold decoding algorithms and evaluate

error -correcting ability of these algorithms for cyclic codes.

We have shown that not all cyclic codes can be L-step orthogonalized.

The L-step orthogonalization procedure can be generalized by allowing the

use of non-orthogonal parity checks et each step. One-step decoding methods

are the only ones that have been investigated by means of their relation to

balanced incomplete block designs. As is well known, many error patterns

with weights greater that [d-1)/2] , where d is the minimum distance of the

code, can be corrected by threshold decoding. It would be desirable to find

more powerful threshold decoding algorithms and to evaluate more precisely

error -correcting ability of threshold decoding algorithms.

2. To construct new codes suitable for threshold decoding or to improve

the threshold decoders for known codes.

The finite geometry codes are not as numerous as BCH codes. It is

easy to define a class of codes which contains the Euclidean geometry codes

and projective geometry codes as subclasses, as follows.

Let a be a primitive element of GF(qm). Let a be an integer which

divides qm-1. Let C be a code whose generator polynomial contains a h as

roots for h which are less than q M-1, are divisible by a, and satisfy the

conditon 0 <w (hp J) < I where 0 < j <s-l and I is a fixed integer. Whenq -

I is a Tnulidple of (q-l) and a is equal to one, we have a Euclidean geometry

code. When I is a multiple of q -1 and a is equal to q -1, we have a projective

geometry code. For other values of I and a we obtain codes that have not been

investigated previously. The number of information digits and the BCH bound
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for these codes can be determined easily. To establish a decoding algorithm

for these codes, possible by exploiting their geometrical properties, would be

very useful.

Improvement of the decoders for finite geometry codes are possible.

The choice of u'-dimensional flat parity checks in the implementation of u-step

decoders is not unique. It is quite possible that one choice would lead to

simpler circuitry than the others. The number of majority gates may Dc

reduced by detailed evaluation of the dependency of these u'-dimensional flat

parity checks. As to one-step decoders for projective geometry codes, we

have demonstrated in section 3.4 the possibility of using some but not all

u-dimensional flats for majority voting and still achieving the same guaranteed

decodable distance as Rudolph's method does. The number of parity checks

in the one-step decoding algorithm for Euclidean geometry codes and BCH codes

proposed in section 4. 2 may be more than enough. The guaranteed decodable

distance 1 + [(qm-1) / (qu-1)] for one-step decoding of finite geometry codes

bv th~s decoder is only a bound which may underestimates the error-correcting

ability of the decoder. Further investigation of these questions may lead to

fruitful results.
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